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ABSTRACT 

In this paper, we present a system for Distributed Intelligent 
Planning and Scheduling (DIPS) that helps a spacecraft function as 
an autonomous agent. A DIPS-based spacecraft receives only 
high-level goals from ground station operators, and performs its 
own planning and scheduling onboard, achieving these goals with 
onboard subsystems and in cooperation with other spacecraft. 
The task decentralization in DIPS employs a domain distribution 
algorithm that typically creates a feasible schedule after the first 
coordination effort, thereby decreasing inter-agent negotiation 
during the scheduling process. The reasoning performed by DIPS 
agents to optimize time and resource usage while maintaining flight 
rules and constraints is based on a constraint propagation 
paradigm. Priority-based scheduling is implemented, and a 
hierarchical inter-agent confirmation/authorization system is used 
for global goal coordination. An enhanced prototype is developed 
and demonstrated using space-based scenarios involving onboard 
instruments and a satellite constellation. The vertically layered 
architecture of the DIPS prototype integrates: 1) Java-based agent 
inference engine; 2) Prolog platform SICStus for constraint-based 
reasoning; and 3) KQML for inter-agent communication. We are 
specifically targeting our effort to enhance the planning and 
scheduling capability of NASA’s planned nanosatellite 
constellations. 
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1. INTRODUCTION 
Spacecraft autonomy has the potential for effecting significant 
cost savings in mission operations by reducing the need for 
dedicated ground staff. In an autonomous operating mode, 
operators will communicate only high-level goals and deadlines 

directly to the spacecraft. The spacecraft will then perform its 
own planning and scheduling by decomposing a goal into a set of 
sub-goals to be achieved in cooperation with other spacecraft in 
the environment. In this paper, we present the DIPS system that 
helps a spacecraft function as an autonomous agent by 
incorporating this distributed approach to onboard planning and 
scheduling. 

The term planning refers to the generation of activities that satisfy 
a current set of goals. For example, a planning process to satisfy 
the request for an image generates activities such as rolling the 
camera to the correct position and activating the camera shutter. 
The term schedule describes an association of these specific 
activities with particular start and end times by satisfying 
temporal constraints (e.g., rolling should be performed before the 
shutter action). The onboard spacecraft subsystems must execute 
these time-sensitive activities autonomously to achieve the goals, 
and if none of the subsystems of the spacecraft is capable of 
executing an activity then cooperation from another spacecraft in 
the environment is required. 

Two major trends for task representation in the history of AI 
planning have been observed (Georgeff 1987): goal achievement 
(GA) and hierarchical task network (HTN). The origin of GA-
based planning is in STRIPS (Fikes 1971). In this model of 
representation, an initial situation, a set of possible actions, and a 
goal that is to be achieved are given. Planning consists of finding a 
sequence of actions that would lead from the initial situation to the 
final one. Several planners were subsequently built on the GA 
model including TWEAK (Chapman 1987), and SNLP 
(McAllester 1994). In a planner based on the HTN representation, 
which originated with NOAH (Sacerdoti 1974), planning proceeds 
by selecting a non-primitive task, decomposing it into subtasks 
using a library of available decomposition methods, and then 
detecting and resolving conflicts with other tasks. This process is 
repeated until no non-primitive tasks remain and all the conflicts 
have been resolved. Typical examples of HTN planners are 
FORBIN (Dean 1988), and NONLIN (Tate 1977). There are also 
planners combining features from these two such as O-Plan 
(Currie 1991) and SIPE (Wilkins 1988). 

Given a representation in either GA or HTN, solving a planning 
problem can be viewed as a straightforward search problem, but in 
general the HTN paradigm can lead to more efficient planners 
because it allows the user to limit the search space by guiding the 

 



planner towards acceptable solutions. A typical implementation 
of the search engine of a planner operates on a temporal database 
such as the HSTS system (Muscettola 1994) and Time Map 
Manager (Boddy 1994). The search engine posts constraints to 
the database. The temporal database then constructs a constraint 
network and provides a constraint propagation service (LePape 
1990) to verify the global consistency of the posted constraints 
with the goals, rules and constraints of the spacecraft. Both the 
consistency checking and the search for an optimal solution in 
cooperation with other agents in the environment are 
computationally intractable, that is, NP-hard. A distributed 
approach to planning and scheduling allows cooperation among 
agents in the environment and increases efficiency in the search for 
an optimal solution by partitioning the whole search space. 

In recent years, there has been a growing interest in agent-oriented 
problem solving (CACM 1994), which provides the basis of our 
proposed distributed solution (Chaib-draa 1992) to planning and 
scheduling. The agent-oriented problem-solving environment 
increases efficiency and capability (Rosenschein 1982) by 
employing a set of agents that communicate and cooperate with 
each other to achieve their goals. We use the term agent to refer to 
an entity that operates autonomously or semi-autonomously 
while interacting with other agents in the environment by means of 
communication. Although types of agents range from software 
agents (Genesereth and Ketchpel 1994) implementing the behavior 
of humans, machines or hardware, to mechanical or electronic 
robots (Simmons 1991) with the capability of perceiving or 
sensing the environment and executing appropriate actions, our 
assumption is that every agent will have an interface that 
understands a common communication language. 

In our envisioned distributed (or equivalently, multi-agent) 
environment (Conry 1988; Georgeff 1983), a set of problem-
solving autonomous agents (spacecraft and onboard subsystems of 
a spacecraft) based on DIPS communicate, cooperate, and 
negotiate to achieve high-level goals through planning and 
scheduling. Distributed planning and scheduling emphasizes a 
decentralized organization in which schedules are generated and 
executed cooperatively and concurrently by agents. This can be 
contrasted with a centralized planning environment in which goals, 
rules, and constraints from individual agents are accumulated at a 
central place, and a centralized planner is used to generate a global 
schedule. The centralized approach is particularly unsuitable when 
the problem is inherently distributed such as in a spacecraft 
environment where each subsystem or spacecraft functions 
autonomously. 

The domain knowledge of tasks and their components in DIPS are 
manifested through a hierarchical language taking into account 
spacecraft operational aspects and resource constraints. The task 
decentralization in DIPS is performed by employing a domain 
distribution algorithm that typically allows a feasible schedule to 
be found after only the first coordination effort, therefore greatly 
decreasing the need for inter-agent communication during the 
scheduling process. The reasoning performed by DIPS agents for 

scheduling tasks by optimizing time and resources is based on a 
constraint propagation paradigm. An enhanced prototype has 
been developed and demonstrated using space-based scenarios 
involving onboard sensors and a satellite constellation. The 
vertically layered architecture of the DIPS prototype integrates: 1) 
Java-based agent inference engine; 2) Prolog platform SICStus for 
constraint-based reasoning; and 3) KQML for inter-agent 
communication.  

The rest of the paper is organized as follows. First we describe a 
space-based scenario to illustrate the envisioned operating mode of 
a spacecraft agent: to achieve high level goals through distributed 
planning and scheduling. Then we present the DIPS architecture in 
Section 3 that can be instantiated appropriately to implement an 
agent in the environment. The hierarchical syntax for modeling an 
agent’s domain knowledge of tasks is presented in Section 4. 
Section 5 describes the protocol for inter-agent communication. 
Section 6 contains our approach to decentralization and 
coordination of tasks among agents. The functionality of the 
current prototype is described in Section 7. Finally, we summarize 
our work in Section 8 and lay out our future plan for extending the 
work. 

2. SATELLITE CONSTELLATION 
SCENARIO 
We present a scenario that will illustrate our envisioned 
distributed planning and scheduling by incorporating several key 
problem areas prevalent in a distributed scheduling environment. 
The simulation of this environment consists of a constellation of 
satellites, each with a number of local resources and the knowledge 
of hierarchical task decompositions. 

The primary goal of the envisioned distributed system is to 
successfully distribute high-level task requests to multiple 
independent resources and to maintain the consistency of 
constraints placed on those requests. In trying to fulfill this goal, 
however, there are several problems that can arise. These include 
replanning due to over-scheduling of a resource, forced scheduling 
of high priority requests, increased priority based on a request’s 
Time To Live (TTL), accommodation of lapses in agent 
communication/availability, negotiation with competitive 
satellites, resource/property management, and use of idle time for 
schedule optimization. 

2.1.1 Scheduling Environment 
The scenario consists of a constellation of low-Earth orbiting 
spacecraft that have cross-link communication capability, each 
carrying nearly the same suite of instruments. Controlling the 
constellation is done via a futuristic network of ground stations, in 
which each ground station can communicate to only one satellite at 
a time. Each onboard instrument is locally controlled; requests can 
be sent to the network from any ground station. A request is 
defined as a goal that requires use of an instrument and associated 
data memory storage, containing start/stop times and operational 



parameters. Agents can communicate with each other in order to 
coordinate high-level goals and to maintain global constraints. 

2.1.2 Scenario Hierarchy Specification 
The Satellite Constellation Scenario has the following hierarchy: 

SAT5 SAT4

SAT6

SAT1 SAT2

SAT3Home

MRIS5 Thruster5

HI5

AMSU5

OMS5

MSR5

 

Figure 1: Scenario Hierarchy 

?? Home (Ground control)—This represents a ground control 
station on Earth. It has 6 satellite children, “SAT1” through 
“SAT6”. 

?? SAT1-SAT6: Each of these DIPS-based agents represents a 
satellite in the constellation. Every satellite has essentially 
the same collection of instruments onboard with slight 
variations in capability/efficiency. 

?? Onboard Resources: Ozone Mapping Spectrometer (OMS), 
Microwave Scanning Radiometer (MRS), Moderate 
Resolution Imaging Spectroradiometer (MRIS), 
Hyperspectral Imager (HI), Advanced Microwave Sounding 
Unit  (AMSU), Thrusters Agent. 

Each resource onboard a DIPS Satellite Agent has its own local 
DIPS Resource Agent. There may also be some intermediate DIPS 
System Agents introduced on each satellite in order to manage 
groups of related resources. 

2.1.3 Basic Distributed Scheduling 
In order to demonstrate basic distributed scheduling capabilities, 
the scenario begins with a number of high-level goal requests 
introduced to the constellation by the “Home” ground control 
agent. Every capable DIPS SAT Agent decomposes the task, and 
corresponding subtask requests are sent to onboard resource and 
system agents. The scenario includes multiple compound task 
requests with overlapping time domains. The DIPS-based Agents 
perform a reasonable effort of coordinating these task distributions 
so that most are successfully scheduled on the first pass without 
the need for rescheduling or inter-agent negotiation. 

2.1.4 Special Situations 
In order to force over-scheduling on some local onboard resources, 
the scenario includes several conflicting requests. Every DIPS 

SAT Agent will prefer to schedule its subtasks on the least 
expensive resources available—sometimes at the exp ense of over-
scheduling a preferred local resource with tentative subtask 
requests. Top priority requests are introduced to the constellation 
as forced requests, which will always succeed and be locked into 
the necessary local schedules, even if other non-forced tasks have 
been scheduled on those resources at conflicting times. 

 As a task nears its execution time, its Time To Live (TTL) 
decreases. A DIPS-based agent will process a task request with a 
very short TTL before another task request with a long TTL, even 
if the latter is of higher priority. 

The scenario also includes temporary lapses in communication 
between specific satellites and other DIPS agents in the 
community. A satellite will move out of the range of a ground 
station for a specified time period, during which a message relay 
system using other agents in the community may still allow 
messages to reach their destination. For example, every DIPS 
agent that receives a task request addressed to “ALL” immediately 
forwards the request to all of its siblings in the community to 
ensure that the requests reach all potential executors. 

It is conceivable that a DIPS agent may wish to negotiate with 
non-friendly satellites in a competitive environment. The scenario 
includes at least one situation that requires a satellite to use a more 
expensive competitor satellite in order to complete a task when a 
request cannot be accommodated locally. 

An important real-life issue in a satellite constellation is the 
management of resources and physical properties. For example, an 
image of a certain region of Earth can only be taken within a 
certain time frame while a satellite is over that location. There may 
also be certain constraints on power consumption that affect 
resource availability. The scenario includes several task requests 
that require a DIPS Satellite Agent to reason about its resources 
and physical properties. Satellites also are required to perform 
certain mandatory maintenance tasks throughout the scenario. 

The scenario allows some idle time for each satellite during which 
it may explore other feasible solutions to the problem in order to 
optimize its schedule and accommodate as many task requests as 
possible. If all requests have been successfully decomposed, a 
satellite can use its idle time to search for more optimal usage of 
time and resources. 

3. DIPS AGENT ARCHITECTURE 
The architecture of a DIPS agent is deliberative: there is an explicit 
symbolic representation of the model of the dynamic environment, 
and DIPS agents make decisions via logical reasoning based on 
pattern matching and symbolic manipulation. Several different 
deliberative agent architectures have been proposed in the 
literature, and two of them are most prominent: horizontally 
layered architecture (Ferguson 1992) and vertically layered 
architecture (Muller 1994). Either layered approach models an 
agent as consisting of several hierarchical functional modules 
representing different requirements of an agent, possibly 



incorporating communication, reaction, inference for planning or 
scheduling, perception, knowledge maintenance, etc. Each layer in 
a horizontally layered architecture has access to both the 
perception and the action components whereas in a vertical 
approach, only one layer has direct interface to the perception and 
action. 

The architecture we have adopted is displayed in Figure 2 and it 
fits into the vertically layered category. The three layers are the 
world interface layer, the inference layer, and the network 
management layer. A DIPS agent’s knowledge base is also split 
into three modules corresponding to the three layers. 

3.1 World Interface Layer 
The world interface layer contains a DIPS agent’s facilities for 
perception, action, and communication, which all require a detailed 
knowledge about the environment. A DIPS agent’s world model 
contains information about the environment such as the locations 
and capabilities of other agents. The world interface layer enables 
a DIPS agent to communicate with other agents in the environment 
and perform activities related to planning and scheduling such as 
sending and receiving requests, responding to a request, etc. 

3.1.1 Action and Perception 
The action and perception facilities can be handled through an 
advanced real-time scripting language. A DIPS agent’s actions will 
be performed via calls to scripts that interact with local hardware. 
We are exploring integration with the Spacecraft Command 
Language (SCL) developed by Interface & Control Systems (ICS 
1999). SCL, with its innovative Real-Time Engine (RTE), is 
especially well suited for our real-time scheduling application. The 
RTE supports both time- and event-based script scheduling as 
well as real-time resource monitoring and exception handling. 
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Figure 2: Vertically Layered DIPS Agent Architecture 

Through such an interaction, schedules generated by the inference 
layer could be actuated on local resources. The world knowledge, 
or information about the states of these resources, may be 
gathered through sensor data. The inference layer can access this 
through the scripting language, which provides the perception 
component of the world interface. 

3.1.2 Communication 
All inter-agent communication and knowledge manipulation is 
done via message passing. A DIPS agent uses messages in 
Knowledge Query and Manipulation Language (KQML) 
compliant format to communicate goal requests, goal 
confirmations/denials, capability insertions, and other standard 
KQML performatives. The world interface layer sends and 
receives messages from other agents in the community and passes 
them to the inference layer to be handled appropriately. 

3.2 Inference Layer 
Written entirely in Java, the inference layer of the DIPS prototype 
agent applies its domain knowledge to goal-related messages in 
order to decompose compound task requests or to schedule 
primitive tasks on local resources. 

The domain knowledge consists of the knowledge of the 
application such as definitions of different task abstractions and 
the effects of a task when it is carried out. Although most of the 
domain knowledge is static for the duration of a particular 
application, it can still be manipulated at runtime through message 
passing. When a new resource comes online, for example, any new 
relevant scripts or task definitions can be added to a DIPS agent’s 
domain knowledge through capability insertions. The content of 
the domain knowledge and the functionality of a DIPS agent’s 
inference layer depend on the type of agent. The DIPS system 
currently recognizes two distinct subclasses within the DIPS agent 
architecture: System Agents and Resource Agents. 

3.2.1 DIPS System Agent 
A DIPS System Agent represents a system of primitive resources, 
so the capabilities of a DIPS System Agent (e.g., a Satellite) 
consist only of decomposable compound tasks. A DIPS System 
Agent does not maintain a local schedule for it has no local 
resources; rather it coordinates a group of subagents, some of 
which may also be System Agents. When a DIPS System Agent 
receives a high-level goal request, it uses a predefined 
decomposition from its domain knowledge to create a plan for that 
task, and then uses its constraint management layer to create a 
feasible schedule for that plan. Each subtask in the plan is assigned 
a certain time interval based on the decomposition constraints, and 
subtask requests are sent out to all subagents. 

3.2.2 DIPS Resource Agent 
A DIPS Resource Agent represents a physical onboard resource. 
Its capabilities are all primitive tasks that can be performed via 
calls to predefined low-level scripts. When a DIPS Resource 
Agent receives a primitive task request, it posts new temporal 
constraints describing the task to the constraint database. The 



inference layer uses the constraint management layer to verify the 
feasibility of its new augmented local schedule and to generate an 
instance if feasible. 

3.3 Constraint Management Layer 
The constraint management layer of a DIPS agent is based in a 
version of the Prolog language called SICStus Prolog, developed by 
the Swedish Institute of Computer Science (SICS). SICStus Prolog 
has capabilities for Constraint Logic Programming in Finite 
Domains (CLPFD) that allow several important developments. 
Most notably, CLPFD allows arithmetic constraints on variables 
to be introduced into a program, and it can perform arithmetic on 
these variables even when they are uninstantiated (Pountain 
1995). For example, one interval [SA,EA] can be constrained to 
overlap a second interval [SB,EB] using the following constraints 
(see Section 6.1.1): 

SA=<SB, 

EA>=SB, 

EA=<EB. 

A database of constraints is maintained by the inference layer of a 
DIPS agent, and the SICStus Prolog emulator is used as a back-end 
schedule solver. When a DIPS Resource Agent receives a task 
request, it posts any new constraints regarding that task to the 
constraint database and then queries the Prolog constraint 
management layer for a feasible instance of its local schedule. 
When the new constraints are propagated through the constraint 
network, the schedule will reflect these changes. 

A DIPS System Agent uses its constraint management layer for a 
different purpose. Because a DIPS System Agent has no local 
resources and therefore no local schedule to maintain, it uses the 
SICStus emulator to generate regional schedules for individual task 
decompositions. 

4. HIERARCHICAL MODELING 
As mentioned in the introduction, a planning process based on a 
HTN representation first constructs a plan containing abstract 
high-level activities and then refines these components in more 
detail. This process of refinement continues until these high-level 
activities correspond to the physical actions in the real world. The 
advantage of this approach is that the feasibility of a plan can be 
studied incrementally. If a DIPS agent is implementing the above 
refinement process then domain knowledge of the tasks and their 
components have to be codified in some language. We provide here 
some examples of HTN representations (similar to Das, Fox et al. 
(1997)) used in DIPS.  

4.1 Compound Goals 
A compound task specification used by DIPS has two 
components: 1) a set of subtasks that compose a possible plan for 
achieving the goal; 2) a set of temporal constraints including 
constraints on the ordering of the subtasks. These subtasks may 
also be compound themselves. A simplified example task 
decomposition for a DIPS Satellite Agent is provided below: 

infrared-picture[Start,End,Filter,Long,Lat] = 

 { CameraAgent.picture[Start,End,Filter,Long,Lat]; 

   RecordingAgent.record[Start,End]; 

   TransmitterAgent.transmit[Start,End] } 

 { task1 span 8; task2 span 2; task3 span 5; 

   task1 before task2; task2 before task3; 

    task1 during [Start,End]; task3 during [Start,End]; } 

This defines the high-level goal “infrared-picture” in terms of its 
subcomponents. Each of these subcomponents may be compound 
in turn; a DIPS agent can only reason about the immediate sublevel 
in the HTN. The example decomposition has three subtasks: 1) A 
Camera Agent takes the picture; 2) A Recording Agent records the 
picture; 3) A Transmitter Agent transmits the picture to Earth.  

The second component of the example contains constraints that 
relate the subtasks to each other and to the request domain. The 
minimum duration of each subtask is specified as an integer by the 
“span” constraints, while the rest of the constraints may be any of 
those recognized by the DIPS constraint management layer. This 
decomposition plan, a list of subgoals and temporal constraints, is 
sent through a query to the SICStus Prolog scheduling predicate, 
which returns a feasible instance of the schedule. (How this 
instantiation is chosen is described in Section 6.) The agent can 
then distribute the subtasks to the appropriate subagents with the 
allocated portions of the original request domain. 

4.2 Primitive Tasks 
Each primitive task (or atomic action) in the DIPS scenario world 
corresponds to a call made to a scripting language such as SCL. 
These scripts themselves may contain several actions, but due to 
the fixed nature of a primitive task, these are considered immutable 
subatomic actions. An example of a primitive task specification 
for a Power Agent is provided below: 

power-on[Start,End] =  

                { “power-on from <Start> to <End>“ } 

 { task1 span 1 } 

Here the “plan” for achieving this goal is simply a script call, and 
the constraints component describes the minimum duration for the 
task—in this case 1 time unit. 

5. AGENT COMMUNICATION 
Coherence, cooperation and conflict resolution can be improved 
by carefully designing the amount and type of communication 
among agents in the form of messages (Patil, Fikes et al. 1992). 
The information communicated should be relevant, timely and 
complete (Durfee 1985). Any inter-agent communication in DIPS 
uses a KQML-compliant format to enhance robustness and 
modularity. 

A DIPS KQML message is considered valid if it has at least the 
following fields: sender, receiver, id and path. Every KQML 
message also has a performative that describes the type of 



communication. Most messages also have a content field 
containing an expression describing the purpose of the message. 

Agents from the DIPS system currently use only a subset of the 
standard KQML performatives. The most commonly used are the 
following: insert, evaluate, confirm, authorize, and sorry. 

Following is a simple example of a goal request sent from a 
CameraAgent to a FilterAgent: 

evaluate  :content goal(set-filter[125,135]) 

:id Home-22-Satellite1-0-3-CameraAgent2-0-2 

:priority 10  :sender CameraAgent2 :receiver 
FilterAgent1 

The id field describes the absolute path followed by this goal 
request thread from its originating agent to the current node in the 
HTN, including the index of the decomposition used and the index 
of the subtask that spawned the current request. 

6. DECENTRALIZATION AND 
COORDINATION 
The key concept of the DIPS system is to incrementally partition 
the scheduling problem into smaller independent subproblems of 
increasing granularity which can then be solved in parallel. While 
this may sacrifice global completeness and optimality in the search 
for a feasible plan, the distributed scheduling approach greatly 
reduces the complexity of a large-scale multiple-resource 
scheduling problem. 

6.1 Least Commitment Scheduling 
The important development made by the use of the constraint 
management layer is that relational constraints on time and 
resource consumption can be specified in the scheduling process. 
This allows the full and precise description of plans and task 
decompositions without any specification of actual start times. 
Empowering a DIPS agent with this mentality of least commitment 
allows reactive planning and dynamic rescheduling; the Prolog 
scheduler will allow local changes to be made while adhering to the 
original global constraints. 

6.1.1 Recognized Temporal Constraints 
As proposed by Allen (1984), we will recognize 7 basic temporal 
relations between two actions. These relations for two actions, A 
and B with intervals [SA,EA] and [SB,EB] respectively, are shown 
below in Table 1. Any other relation can be expressed as the 
inverse of one of these. 

1. A  before    B EA<SB, 

2. A  during    B SB<SA,  EA<EB 

3. A  overlaps B SA<SB,  SB<EA<EB 

4. A  equals     B SA=SB,  EA=EB 

5. A  meets     B EA=SB 

6. A  starts      B SA= SB,  EA<EB 

7. A  finishes  B SB< SA,  EA= EB 

Table 1: Recognized Temporal Constraints 

The first three constraints, before, during, and overlaps, are the 
three basic types of relations. Constraining two actions with these 
relations allows some flexibility in the instantiation of real start 
and end times. The last four can be considered special cases of the 
basic types, which all involve reasoning about specific start or end 
times for the actions and do not allow any flexibility for one event 
once the other has been bound to a real interval. 

6.2 Domain Distribution Algorithm 
In contrast to previous distributed planning and scheduling 
systems such as DAS (Burke 1991), DIPS employs a domain 
distribution algorithm that typically allows a feasible plan to be 
found after only the first coordination effort, therefore greatly 
decreasing the need for inter-agent negotiation during the 
scheduling process. As an extension to the least commitment 
approach, each node in the DIPS HTN leaves as much flexibility 
in the next sublevel as possible when coordinating the domain 
distribution. The basic underlying algorithm: when choosing a 
feasible schedule (partial ordering) of subtasks for a given 
compound goal, allocate to each subtask as generous (large) a time 
interval as possible without allowing global constraints to be 
violated when the subtasks are instantiated on the next level in the 
HTN. 

The simplest solution is to allocate to each subtask a portion of 
the whole domain the size of which is relative to the duration of 
the subtask. This solution works perfectly well when dealing only 
with the ordering of tasks (when the only type of constraint being 
used is the before constraint). Consider the following example 
decomposition: Two tasks, A with interval [SA,EA] and B with 
interval [SB,EB], are to be scheduled during the request domain 
[100,200]. The only constraints on the tasks are their durations A 
spans 10, B spans 30, and A before B. The following schedule 
could be generated that would satisfy the constraints without 
using a generous distribution: 

B

A
100 110

110 140

 
Using the DIPS generous approach to domain distribution, 
however, these subtask domains would be as large as possible in 
order to provide flexibility at lower levels in the HTN (note that 
the ratio of the domain sizes A:B remains the same) 

A

B

100 125

125 200

 

The second instance of the schedule will allow flexibility in the 
instantiation of both subtasks when they are distributed to the 
subagents. In both cases the original constraints are fulfilled, but 
the first example is more likely to require inter-agent negotiation 



(and thus to some extent a global search) when local resources are 
overscheduled during certain intervals. The second example 
demonstrates the least commitment paradigm by relaxing the 
constraints on the tasks as much as possible. 

6.2.1 Distribution Conflicts 
Applying a generous domain distribution algorithm is clearly 
simple in cases of basic ordering between tasks (only using the 
before constraint). In order to distribute portions of a scheduling 
problem that includes any of the other temporal relations, a 
system for managing global constraints must be developed. 

Let us consider a slightly more complicated example regarding the 
same tasks A and B, except that they are related with the following 
constraint: A overlaps B. (See Table 1.) A flawed generous 
approach might produce this schedule instead: 

A
100 125

B
115 190

 
Consider the possible instantiations for each subtask on the next 
level of the HTN. It is entirely possible that A could start and 
finish (e.g., [100,110]) before the start of B (e.g., [115,145])  

The DIPS algorithm solves this problem by treating the 
constraints during and overlaps as special cases. The Prolog 
decomposition predicate increases the size of the domain of each 
subtask within the following boundaries: if one subtask is related 
to another by one of the inflexible constraints, (meets, starts, 
finishes, equals), the domain size is left equal to the duration of 
the subtask; if the subtask is constrained to other subtasks only 
by the before relation, the domain size is expanded proportionally 
to the duration of the subtask; if there exist any constraints 
relating this subtask to another with during or overlaps, several 
new variables are introduced in order to reason about the 
constrained intervals. An interval [SB,EB] allocated for task B has 
three components at the decomposition level: the domain start SB, 
the domain end EB, and the expected duration spanned by the task 
DB. By definition, DB =< EB – SB. 

For every task A that is constrained to overlap B, the size of the 
domains of A and B may be increased while A cannot be started 
anywhere within its domain such that it does not overlap B, and 
vice-versa. Compare this formula with the simple version of 
overlaps in Section 3.3. 

SA+DA>=EB–DB, 

SB>=EA–DA, 

EA<=SB+DB. 

For every task A that is constrained to be during B, the size of the 
domains of A and B may be increased while B cannot be started 
anywhere within its domain such that it does not fully include the 
domain of A.   

EB–SA=<DB, 

EA–SB=<DB. 

Again examining the above intervals A=10 and B=30, the improved 
generous approach might produce the following schedule instead. 
This schedule still provides flexibility on the next level but 
without the possibility of global constraint violation: 

A
100 115

B
105 140

 

7. IMPLEMENTATION 
The current system for simulating a scenario uses one main 
Launcher application written in Java to start each DIPS agent as 
an independent thread with its own initialization file of capability 
insertions in the form of KQML messages. An interface to the 
Launcher allows customization of the scenario at runtime. 

 

Figure 3: DIPS Launcher Interface 

In this example view, SAT3, has 5 Satellite siblings (middle row) 
and 6 child agents (bottom row), each of which is a DIPS Resource 
Agent. As shown above the link between certain agents can be 
disabled to simulate a communications lapse. Through this 
interface, trace files of inter-agent goal requests (in KQML format) 
are introduced into the DIPS community. Whenever two task 
requests conflict on a local resource, the DIPS System Agent that 
originated the request will automatically attempt to reschedule 
that subtask on the next cheapest resource.  

 

Figure 4: Agent Local Schedule 



Figure 4 shows the local schedule of a DIPS Transmitter agent, 
containing three locally scheduled tasks, two of which (2-0, 3-0) 
are conflicting, but only one of which, 2-0, is high priority (or 
forced). Because task 2-0 is still tentative, the agent has allowed a 
lower priority task to be given the same time interval. When the 
task is authorized (finalized by the originating agent), it will force 
out any conflicting requests due to its high priority. Thus in 
Figure 5 below the conflicting request 3-0 has been removed from 
the schedule once 2-0 was authorized.  

 

Figure 5: Authorized Local Schedule 

We can also see the resulting messages sent to Home1 in Figure 6. 
Notice that the high priority task, 2-0, was successfully 
authorized, while the conflicting low-priority task, 3-0, could no 
longer be scheduled consistently on all necessary resources, and a 
sorry message was therefore returned up the HTN to the Home1 
DIPS agent. 

 

Figure 6: Task Authorization Replies 

In addition to dealing with request conflicts, we submit a set of 
similar task requests within a certain time interval in order to 
examine the performance of the DIPS-based community under 
heavy request and scheduling loads. Communications travel in 
both directions through the hierarchy, including confirm and sorry 
replies from subagents pertaining to high-level goal requests. An 
example scenario consisting of 4 System agents and 14 Resource 
agents (a total of 18 HTN nodes) can distribute and schedule 35 
high-level goal requests corresponding to 280 primitive tasks in 
under 5 minutes, even when running on a single CPU.  

8. CONCLUSION AND FUTURE WORK 
In this paper, we have demonstrated how our distributed 
approach to planning and scheduling helps to achieve high-level 

goals and thereby enhances spacecraft autonomy. A hierarchical 
syntax has been adopted for representing domain knowledge of 
task decompositions and employed to solve the task 
decentralization problem. A constraint propagation paradigm has 
been employed for the required planning and scheduling tasks 
performed by an autonomous agent, and an innovative system for 
the decentralization of a global scheduling problem has been 
developed and employed with promising results. Priority-based 
scheduling has been implemented, and a hierarchical inter-agent 
confirmation/authorization system was used for global goal 
coordination.  

The relative speed with which new requests can be processed 
indicates two areas of success by the DIPS system: 1) efficient 
multiple-resource scheduling in a distributed environment by 
reduction of the complexity of the global scheduling problem; and 
2) implementation of a generous domain distribution algorithm 
that minimizes inter-agent negotiation. The global scheduling 
problem in our multi-resource scheduling example would be 
computationally difficult for a single scheduling agent to solve as a 
whole; yet after decentralization through the DIPS HTN, the total 
search space was reduced exponentially, and a solution was 
produced with relative efficiency. A solution is found with much 
greater efficiency while still satisfying global constraints. 

The efforts of the DIPS system currently focus on schedule 
creation and maintenance rather than on schedule optimization due 
to the dynamic real-time nature of the application. Further efforts 
include the use of CPU idle time for replanning and schedule 
optimization based on cost utilities. Ongoing efforts also include 
integration with SCL to enhance the real-time and real-world 
applicability of the DIPS system. The initial scenario will be 
augmented by incorporating actual capabilities of real satellites 
such as NASA’s planned nanosatellite constellations in order to 
model real problems that may arise. Actual task decompositions 
of standard observing sequences will form the core of the task 
requests. 
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